Top1: panjang diagonal ruang suatu kubus adalah â48 cm. Volume - Brainly; Top 2: diketahui panjang salah satu diagonal ruang sebuah kubus adalah akar Top 3: Panjang suatu diagonal ruang suatu kubus adalah 48 - Roboguru; Top 4: Panjang diagonal ruang suatu kubus adalah â48 cm - JawabSoal.ID
Diketahuinilai sin a cos B=1/5 dan sin (a-b)=3/5 untuk 0 <a<180 dan 0 < b < 90 nilai sin (a + b)= - 8842058 miaw4 miaw4 13.12.2016 Matematika diketahui vektor p=3i+2j-k, q=4i-j+2k dan r=-i+j+ hubungan. 2p-3q+cr=(-10, 11,4) c adalah bilangan real, maka nilai c adalah
Contoh Soal Trigonometri Lengkap Berikut ini saya berikan contoh-contoh soal trigonometri SMA beserta pembahasannya. Harapannya dapat membantu anda dalam mengerjakan soal-soal tentang trigonometri yang mempunyai kemiripan dengan soal dan pembahasna di bawah ini. A. Contoh Soal Konsep Trigonometri 1. Tentukan nilai sin a dan cot a, jika diketahui cos a = 3/5 ! 2. Tentukan nilai cos b dan cosec b, jika diketahui tan b = â2 ! Jawab B. Contoh Soal Sudut Istimewa Trigonometri 1. Tentukan nilai dari Sin 30° + Cos 45° ! 2. Tentukan nilai dari Sin 45° . Tan 60° + Cos 45° . Cot 60° ! Jawab C. Contoh Soal Identitas Trigonometri Buktikan identitas-identitas trigonometri di bawah ini ! Jawab Soal 1Jika x di kuadran II dan tan x = a, maka sin x adalah .... A. a/ â1+a2 D. -1/ â1+a2 B. -a/ â1+a2 E. -âa-a2/ a C. 1/ â1+a2 Jawab tan x = p/q ââââââââââââââËââââââââââââââ sin x = p/ âp2 + q2 cos x = q/ âp2 + q2tan x = a/-1 â sin x = -a/ â1+a2 Jadi jawabannya adalah B Soal 2Jika cos x = â5/5, maka ctg Ï/2 - x = .... A. 6 D. -3 B. 5 E. 2 C. 4 Jawab - INGAT - â cos x = p/q â sin x = âq2 - p2/ qâ ctg Ï/2 - x = tan xâ tan x = sin x/cos xcos x = â5/5 â sin x = â25 - 5/ 5 = â20/5 tan x = sin x/cos x = â20/5 / â5/5 = â20/ â5 = â4 = 2Jadi jawabannya adalah E. 2 D. Contoh Soal Jumlah dan Selisih Trigonometri Tentukan nilai dari sin 105° + sin 15° =........? Jawabsin 105° + sin 15° = 2 sin 1/2 105° + 15° . cos 1/2 105° - 15° = 2 sin 1/2 120° . cos 1/2 90° = 2 sin 60° . cos 45° = 2. 1/2 â3. 1/2 â2 = 1/2 â6 Contoh Soal 2 Tentukan nilai dari cos 75° - cos 15° = .....? Jawabcos 75° - cos 15° = -2 sin 1/2 75° + 15° . sin 1/2 75° - 15° = -2 sin 1/2 90° . sin 1/2 60° = -2 sin 45° . sin 30° = -2. 1/2 â2. 1/2 = -1/2 â2 Tentukan nilai dari 2 sin75 cos15 ! Jawab2 sin75 cos 15 = sin75 + 15 + sin75 - 15 = sin 90 + sin 60 = 1 + 1/2 â3 Contoh soal Diketahui nilai Sin A adalah 3/5. Tentukan nilai Sin 2A ! Jawab Sin 2A = 2 Sin A Cos A Cari nilai Cos A, dengan cara membuat konsep perbandingan trigonometri. Buatlah sebuah segitiga dengan perbandingan depan/miring sama dengan 3/5. Dengan rumus pythagoras, didapat sisi samping segitiga = 4. Jadi nilai Cos A = 4/5 samping/miring . maka Sin 2A = 2 Sin A Cos A = 2 3/5 4/5 = 2 12/25 Sin 2A = 24/25 Contoh Soal Dengan menggunakan rumus penjumlahan dan selisih dua sudut, tentukan nilai dari ! a. sin 75° b. cos 15° Jawab a. Kita gunakan rumus penjumlahan sin α + ÎČ = sin α cos ÎČ + cos α sin ÎČ sin 75° = sin 45° + 30° = sin 45° cos 30° + cos 45° sin 30° = 1/2 â2 . 1/2 â3 + 1/2 â2 . 1/2 = 1/4 â6 + 1/4 â2 = 1/4 â6 + â2 b. Kita gunakan rumus selisih cos α - ÎČ = cos α cos ÎČ + sin α sin ÎČ cos 15° = cos 45° - 30° = cos 45 cos 30 + sin 45 sin 30 = 1/2 â2 . â3 + 1/2 â2 . 1/2 = 1/4 â6 + 1/4 â2 = 1/4 â6 + â2 Demikianlah contoh-contoh soal trigonometri dan pembahasannya. Jika anda membutuhkan rumus-rumus singkatnya, anda bisa melihat di sini rumus-rumus trigonometri SMA Terima kasih Sudah berkunjung dan membaca. Semoga sukses untuk kita semua. Salam. Top1: Diketahui cos A = 0,28 dengan A sudut lancip maka nilai dari sin A Top 2: a. sin A b. cos A 3. diketahui sin A=10/36 dan A sudut lancip Top 3: Soal Diketahui sin A=0,28Ingat rumus perbandingan trigonometri untuk penjumlahan dua sudut sebagai berikut Ingat juga, bahwa nilai sinus dan cosinus merupakan perbandingan sisi-sisi segitiga dengan garis miringnya. Sisi segitiga dapat dicari dengan menggunakan rumus phytagoras sebagai berikut Berdasarkan rumus di atas, maka bentuk trigonometri tersebut dapat diselesaikan seperti berikut Menentukan terlebih dahulu Sehingga . Menentukan Sehingga . Berdasarkan nilai-nilai sinus dan cosinus di atas, maka nilai dari bentuk trigonometri tersebut sebagai beikut Dengan demikian, nilai dari adalah .
Kelas 11 SMAPersamaan TrigonometriRumus Jumlah dan Selisih SudutDiketahui sin a=3/5 dan cos b=5/13 dengan alpha dan beta sudut lancip. Nilai tana-b= ....Rumus Jumlah dan Selisih SudutPersamaan TrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0508Jika sudut a dan b lancip, sin a=3/5 dan sin b=7/25, nila...0217Diketahui sin A+sin B=1 dan cos A + cos B=akar5/3, nila...0403Jika a + B = pi/4 dan cos a cos B = 3/4, maka cos a - B...0122Diketahui sin 24=p dan cos 24=q. Hasil dari tan 156 adal...Teks videountuk menyelesaikan soal tersebut pertama-tama kita harus mengetahui terlebih dahulu konsep dari trigonometri Karena untuk sudut Alfa dan sudut beta adalah sudut lancip berarti disini kita buatkan terlebih dahulu untuk segitiga dengan sudut Alfa dan Beta yang memiliki sudut lancip pada trigonometri jika kita memiliki segitiga dengan itu adalah sudut lancip di sini kita lihat pada gambarnya dengan alfa itu adalah letaknya sudut lancip yang di mana sudut lancip itu adalah sudut yang kurang dari 90 derajat di sini untuk mengetahui Sin dari Alfa maka disini kita bisa pagi untuk Sisi yang berada di depan sudut dibagi dengan sisi miring dalam hal ini Kemudian untuk apa itu adalah Sisi yang ada di samping sudut dibagi dengan sisi miring dalam hal ini DPR C Kemudian untuk kan dari Alfa itu adalah Sisi yang ada di depan sudut dibagi dengan Sisi yang ada di samping sudut dalam halBerarti di sini karena diketahui untuk Sin Alfa itu adalah 3 atau 5 berarti di sini. Diketahui pula bahwa nilai dari A itu adalah 3 dan untuk nilai dari C Itu adalah 5 yaitu letaknya berada di sini dan di sini. Nah karena yang ditanyakan adalah nilai dari Tan Alfa dikurang beta disini kita bisa gunakan rumus Tan Alfa dikurang Tan B dibagi dengan 1 + Tan Alfa dikali dengan tan beta berarti di sini kita harus mengetahui tanda dari Alfa dengan itu di sini kita akan menentukan nilai dari B terlebih dahulu dengan pythagoras untuk B = karena yang ditanyakan adalah Sisi yang lurus berarti di sini kita bisa kurangkan berarti di sini akar dari C kuadrat dikurang a kuadrat atau 5 kuadrat dikurang 3 kuadrat berarti di sini akar dari 25 dikurangi dengan 9 sehingga disini kita peroleh akar dari 16 maka diperoleh B =nah disini kita telah peroleh untuk b = 4 berarti untuk cos Alfa kita bisa peroleh B yaitu 4 per 5 Kemudian untuk Tan Alfa a per B yaitu = 3 atau 4 Nah selanjutnya disini untuk beta karena diketahui untuk cos beta itu adalah 5/13 disini kita bisa Tuliskan 5 per 13 dengan cos beta itu adalah Sisi yang ada di samping sudut dibagi dengan sisi miring berarti di sini sampai di sini ada disini dan disini C sehingga disini kita bisa Tuliskan yang Sisi sudut itu di sini 5 kemudian sisi miring yaitu 13 Nah berarti di sini untuk menentukan tanda dari depannya kita harus menentukan nilai dari a terlebih dahulu untuk menentukan nilai dari a disini kita bisa gunakan teorema Pythagoras juga berarti di sini A = akar dari di sini juga kita kurangkan karena Sisi lurus berarti C kuadrat dikurangi b kuadrat atau 3kuadrat dikurang 5 kuadrat berarti di sini kita bisa peroleh akar dari 13 kuadrat yaitu 169 dikurang 5 kuadrat itu 25 sehingga di sini diperoleh akar dari 144 untuk akar dari 144 itu adalah 12 sehingga diperoleh untuk itu adalah 12 berarti di sini untuk Sin beta Sisi di depan dibagi dengan sisi miring 12 per 13 kemudian Tan beta Sisi di depan dibagi dengan Sisi di samping yaitu 12/5 sehingga disini kita bisa langsung masukkan ke dalam rumus Alfa itu adalah 3 atau 4 kemudian dikurangi dengan tan B 12/5 kemudian dibagi dengan 1 + Tan Alfa yaitu 3 per 4 dikali Tan B 12/5 sehingga disini kita bisa Tuliskan 15 dikurang 48 per 20 kemudian yang satu tidak samakan penyebutnya yaitu 20 per 20 + 320 sehingga disini kita bisa Tuliskan minus dari 33 per 20 dikali dengan 20 per 56 Kemudian untuk 20 jadi sini kita bisa sehingga disini kita peroleh dari 33 atau 56 jadi kita telah peroleh nilai dari Tan Alfa dikurang beta yaitu Min 33 atau 56 pada pilihan jawaban yang Dek sampai jumpa pada pembahasan soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul159Jls.